

About Mike

• Red Siege Principal Consultant

• 26 years IT / 18 years security

• Photographer, musician, hiker

Coming Up

• Get the slides! https://redsiege.com/hiding

• What is shellcode?

• Why do we need to hide it?

• Ways to hide shellcode
• Encoding

• Encryption

• Other ideas

4

What is Shellcode

• Small piece of code used as the payload

• Historically, started a command shell, hence "shellcode"

• Common payload now is your C2 or stage 0

• Stored as raw bytes, hex, int

• https://en.wikipedia.org/wiki/Shellcode

5

Know Before You Go

• Examples here are programs that contain obfuscated shellcode and
deobfuscation routine

• Sample programs did not attempt to execute shellcode

6

Why Hide?

• Shellcode from any well-known framework is likely signatured
• Metasploit / Cobalt Strike / Brute Ratel, etc.

• Including signatured shellcode will likely result in detection

MSF Detected

MSF High Detection Rate

9

How to Hide

• Encode

• Encrypt

• Obfuscate

• Separate shellcode from our loader
• For this talk, I'll be discussing shellcode embedded in the loader

10

Base64 Encoding

• Basically, it's not great

11

Old School Encryption

• Caesar cipher, a.k.a. ROTX

• Shifts alphabet (or byte values) by X bytes
• 0x00 -> 0x0D

• When encrypting, add 0x0D to each byte

• Subtract 0x0D at runtime

12

Effective ~2000 years later

13

(more) Modern Encryption

• XOR, XOR with multibyte key, AES, RC4, etc.

• XOR is the most simple

for (int idx = 0; idx < sizeof(shellcode); idx++) {

shellcode[idx] = shellcode[idx] ^ xorkey;

}

• To recover plaintext, just XOR again

14

XOR - Not Terrible

15

XOR (Multibyte Key)
void XOR(char * ciphertext, size_t ciphertext_len, char * key, size_t key_len)
{

int myByte = 0;

int k_minus_one = key_len - 1;

for (int idx = 0; idx < ciphertext_len; idx++) {

if (myByte == k_minus_one)

{

myByte = 0;

}

ciphertext[idx] = ciphertext[idx] ^ key[myByte];

myByte++;

}

}

16

XOR Multibyte Key - It's Good!

AES

• It's more secure, it must be better!

• Not so much

• More on entropy later

AES Benefit

• Brute-force the last two bytes of the key for a built-in
delay
• Can introduce several minutes of delay without triggering sleep

detection and can't be fast-forwarded

19

RC4 & SystemFunction032/033

• Advapi32.dll has two undocumented functions to decrypt RC4 in
memory

• SystemFunction032 is for encrypting

• SystemFunction033 is for decrypting

• Both functions provide the same result!

SystemFunction033(&_data, &key);

20

SystemFunction032/033 Results

• Not terrible

21

Two Arrays Are Better Than One?

• Split shellcode into two arrays - even and odd
• Based on position in array, not byte value

char shellcode[10] =

{ 0xfc, 0x48, 0x83, 0xe4, 0xf0, 0xe8, 0xcc, 0x85, 0x93, 0x52 };

• ->

char even[5] = { 0xfc, 0x83, 0xf9, 0xcc, 0x93 };

char odd[5] = { 0x48, 0xe4, 0xe8, 0x85, 0x52 };

22

Meh?

23

Flip the Script

• Signatures based on bytes in a specific sequence

https://tenor.com/view/missy-elliot-reverse-it-gif-15151904

24

Flipity Flopity
char reversed_payload[598] = {0xd5, 0xff, ... 0xe4, 0x83, 0x48, 0xfc};

// reverse our array

char shellcode[598] = { 0x00 };

for (int i = 0; i < sizeof(reversed_payload); i++)

{

shellcode[i] = reversed_payload[sizeof(reversed_payload) - i - 1];

}

25

Alright Alright Alright

26

Reverse the Entire String?

• Shellcode string would look like
• "5dx0, ffx0, 65x0, …"

• Unfortunately, not very effective

Camouflage

https://cheezburger.com/1367283968/they-suspect-nothing

28

Shellcode as UUIDs

• UUID/GUID is a 128-bit label for information

• First observed being used by Lazarus group in 2021

https://github.com/boku7/Ninja_UUID_Runner/blob/main/main.c#L232

29

Breaking the Pattern

• Normal shellcode loader has recognizable pattern
• Allocate memory

• Copy shellcode

• Execute shellcode (CreateThread, callback function, etc.)

• Even if your shellcode is not detected, this pattern is well-known

• UuidFromStringA converts shellcode UUID string to binary and
copies into memory for us
• Breaks the pattern!

30

sadtrombone.png

31

Even More Camo

• Shellcode as IPv4/IPv6 address and MAC addresses!
• RtlIpv4StringToAddressA / RtlIpv6StringToAddressA

• RtlEthernetStringToAddressA

• All convert string to binary and copy into memory

32

Catch-22

• We encrypt shellcode so we
don't get caught

• Encryption raises entropy

• High entropy increases chance of
detection

• How do we decrease entropy?

https://www.reddit.com/r/memes/comments/1bcv0i8/catch_22/

33

Get Loquacious

• Defeat entropy checks and hide shellcode using Jargon

• Translation table array of 256 unique words
• Position of each word in array represents a byte of shellcode

• translation_table[0] = 0x00

• translation_table[1] = 0x01

• …

• https://redsiege.com/blog/2023/07/obfuscating-shellcode-using-
jargon/

34

Jargon Example

Shellcode: 0x02, 0x01, 0x03, 0x00, 0x04

unsigned char* translation_table[5] = { "day", "dog",
"cat", "fish", "horse" };

unsigned char* translated_shellcode[5] = { "cat", "dog",
"fish", "day", "horse" };

35

Jargon = Results

36

Jigsaw Puzzle
• shellcode = [0xfc, 0x48, 0x83, 0xe4, 0xf0, 0xe8,
0xcc, 0x00, 0x00, 0x00]

• Create new array same length of shellcode
• positions = list(range(0,10))

• Shuffle the array
• random.shuffle(positions)
• positions = [1, 6, 8, 2, 5, 9, 7, 0, 4, 3]

• Construct the payload

jigsaw = []
 for position in positions:
 jigsaw.append(shellcode[position])

37

Putting the Puzzle Together

• Reconstruct the payload

positions = [1, 6, 8, 2, 5, 9, 7, 0, 4, 3];

int position = 0;

for (int idx = 0; idx < sizeof(positions) /
sizeof(positions[0]); idx++) {

 position = positions[idx];

 shellcode[position] = jigsaw[idx];

}

• https://redsiege.com/blog/2024/03/jigsaw/

38

Jigsaw = Results

39

Delta Encoding

• Store first byte of shellcode in a variable

• Each subsequent byte stored in delta array is
 current_byte - previous_byte

• Shellcode: 0xfc, 0x48, 0x83, 0xe4 …

• Stored array of deltas becomes: 0x4c, 0x3b, 0x61
• 0x48 - 0xfc = 0x4c

• 0x83 - 0x48 = 0x3b

• 0xe4 - 0x83 = 0x61

• https://redsiege.com/blog/2024/04/introducing-delta-encoder/

40

Much Success!

41

Breaking Signatures
• Sometimes our decoding/decryption/translation routines get

signatured

• Compile as a Windows program vs exe

• Break up the pattern by throwing in code that does something but
doesn't change the result
• Disable compiler optimization!
• Inside your decoding/decryption/deobfuscation routine
• printf("");
• Write to null device

• FILE* outfile = fopen("nul", "w");
• fputs("out", outfile);
• fclose(outfile);

42

The Results

43

More Info

• Adventures in Shellcode Obfuscation blog series
• https://redsiege.com/adventures-in-shellcode-obfuscation/

• Code examples
• https://github.com/RedSiege/Chromatophore

https://redsiege.com/adventures-in-shellcode-obfuscation/
https://github.com/RedSiege/Chromatophore

44

Other Obfuscation Ideas

• Steganography

• .NET BigInteger (Casey Smith = GOAT)

• Store shellcode in resource file

• Store shellcode in separate file

• Pull shellcode from remotely hosted location

45

Questions?

• mike@redsiege.com

• @hardwaterhacker / @redsiege

• https://www.linkedin.com/in/mike-saunders-7902631/

• https://redsiege.com/discord

• https://redsiege.com/wednesday-offensive/

• Slides: https://redsiege.com/hiding

46

	Slide 1
	Slide 2: About Mike
	Slide 3: Coming Up
	Slide 4: What is Shellcode
	Slide 5: Know Before You Go
	Slide 6: Why Hide?
	Slide 7: MSF Detected
	Slide 8: MSF High Detection Rate
	Slide 9: How to Hide
	Slide 10: Base64 Encoding
	Slide 11: Old School Encryption
	Slide 12: Effective ~2000 years later
	Slide 13: (more) Modern Encryption
	Slide 14: XOR - Not Terrible
	Slide 15: XOR (Multibyte Key)
	Slide 16: XOR Multibyte Key - It's Good!
	Slide 17: AES
	Slide 18: AES Benefit
	Slide 19: RC4 & SystemFunction032/033
	Slide 20: SystemFunction032/033 Results
	Slide 21: Two Arrays Are Better Than One?
	Slide 22: Meh?
	Slide 23: Flip the Script
	Slide 24: Flipity Flopity
	Slide 25: Alright Alright Alright
	Slide 26: Reverse the Entire String?
	Slide 27: Camouflage
	Slide 28: Shellcode as UUIDs
	Slide 29: Breaking the Pattern
	Slide 30: sadtrombone.png
	Slide 31: Even More Camo
	Slide 32: Catch-22
	Slide 33: Get Loquacious
	Slide 34: Jargon Example
	Slide 35: Jargon = Results
	Slide 36: Jigsaw Puzzle
	Slide 37: Putting the Puzzle Together
	Slide 38: Jigsaw = Results
	Slide 39: Delta Encoding
	Slide 40: Much Success!
	Slide 41: Breaking Signatures
	Slide 42: The Results
	Slide 43: More Info
	Slide 44: Other Obfuscation Ideas
	Slide 45: Questions?
	Slide 46

